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A Viterbi decoder's performance loss due to quantizing data from the additive

white Gaussian noise (AWGN) channel is studied. An optimal quantization scheme
and branch metric calculation method are presented. The uniformly quantized

channel capacity C_(q) is used to determine the smallest number of quantization

bits q that does not cause a significant loss. The quantizer stepsize which maximizes

Cu (q) almost minimizes the decoder bit error rate (BER). However, a slightly Iarger
stepsize is better, like the value that minimizes the Bhattacharyya bound. The range
and renormalization of state metrics are analyzed, in particular for K-- 15 decoders

such as the Big Viterbi Decoder (BVD) for the Galileo mission. These results are

required to design reduced hardware complexity Viterbi decoders with a negligible

quantization loss.

I. Introduction

Theoretically, Viterbi decoding is a maximum-

likelihood decoding algorithm for convolutional codes. In

practice, the main performance loss results from quantiz-

ing input data with q bits. The decoder's hardware com-
plexity and speed depend strongly upon q and the state

metric register length l. Therefore, these parameters must
be chosen as the smallest values that do not cause a signif-

icant bit signal-to-noise ratio (Eb/No) loss. A constraint

length K = 15 decoder performs double the computation
ofa K = 14 decoder, but requires about 0.1 dB less Eb/No

for a bit error rate (BER) of 0.005. Since part of the de-

coder's hardware complexity increases only linearly with q,

even a 0.01-dB quantization loss is large. IIowever, given

that one must construct a fully parallel K = 15 (or K = 7)

decoder, a slightly larger loss might be acceptable or re-
quired by hardware and speed constraints.

The uniformly quantized, additive white Gaussian

noise (AWGN) channel capacity C,,(q) is used to estimate

the quantizer stepsize A and smallest q that result in a

negligible loss. For each q, almost minimum BER occurs

when A maximizes Cu(q) or minimizes the Bhattacharyya

bound 3". New methods are presented to minimize the
state metric register length £ in bits. These estimates

are verified by simulations of three codes : the constraint

length K=7, rate R = 1/2, NASA standard code; the new

experimental K - 15, R = 1/4, Galileo code [1]; and the

K= 15, R = 1/6, "2-dB" code [2].
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These results are used to determine the best design

parameters q, g, and A for K= 15, rate 1/4 and rate 1/6

decoders. Using 6 quantization bits with 10-bit state met-

ric registers would substantially reduce the Big Viterbi De-

coder (BVD) [4] hardware complexity and allow the sys-
tem clock frequency to decrease by a factor of 0.56 as com-

pared to the current design, which has q = 8 and 2= 16.

Using q = 5 would cause an Eb/No loss of 0.02 dB at a BER

of 0.005 for the Galileo code or "2-dB" code, but there is

no measurable Eb/No loss when q = 6. Since the same

losses occurred for 8-bit symbol error rates (SER), these

results apply when an outer block code is concatenated
with the convolutional code.

II. Branch Metrics

When an encoded 0 or 1 is mapped to +1 or -1,

respectively, and then transmitted, the receiver's demod-

ulator output is a conditionally Gaussian random vari-

able y with mean +m or -m and the same variance

cr2 = m2/(2REb/No) as the zero-mean AWGN channel

noise. (This holds for binary phase shift-keyed [BPSK]

signaling with ideal coherent detection.)

For the AWGN channel, a Viterbi decoder finds the

trellis path with minimum Euclidean distance (or equiv-

alently, minimum negative inner product) to the received

sequence. Thus, each trellis branch metric is the inner

product of the length n branch label (with 0 and 1 re-

placed with +1 and -1) and the negative of a received

vector [Yl,Y2,...,Yn]. Hence, the decoder adds -Yi or
+yi (equivalently (-Yl + lYi[)/2 or (Yi + lYi[)/2 when _r is

fixed, because incrementing or multiplying all branch met-
tics by a constant does not change the decoder's output)

to the metrics of those branches with a +1 or -1 in posi-

tion i. Therefore, the decoder may add lYi[ to the metrics

of branches having different signs in position i than that

of Yi, and zero otherwise. Thissign-magnitude method is
used throughout this article because it halves the branch

and state metric maximum ranges, as compared to using

standard integer metrics [3,4]. For example, using this

method in the Scarce-State K = 7, rate 1/2 decoder [5]

would substantially decrease the chip circuitry.

iil. Quantization

When zeros and ones are equally likely in the encoder

input data,

Pr(ly[ = =)-- _ Pr(y = z l +1)+ Pr(y =-x I +1)

+ l[pr(y = z 1-1)+ Pr(y= -z [-1)]

= Pr(y = z I +1) + Pr(y = z I -1)

_ 1 [e_(_v_rn)_/2a_v/_a + e-(_+'_)_/_]

In this article, m = 0.84 volts. The probability distribu-

tion function of lY[ (Fig. 1) suggests that more quantiza-

tion levels are required for the K = 15 codes operating

near 0 dB (high noise variance) than the NASA code at

E_/No = 2.25 dn.

Let the random variable J be the quantized value of

y and for -2 q-1 - 2 < j < 2 q-1 - 2 define

pj =Pr(J=jl+l)

U+o.s),_
1

= _ara f e-(Y-m)212_'_dY

(j-o.s)a

For j = 4-(2 q-1 -- 1), pj is the above integral with

limits (j - 0.5)A and +0% or -oo and (j + 0.5)A.

Since [Jl],..-, IJ-l are summed to form branch met-

rics, the absolute error [Ji - Yi[ in quantizing Yi is also the
contribution to the branch metric error incurred. A de-

coder using signed integers to represent Ji could conceptu-

ally use 0, 4-A, +2A, ..., -t-(2 q-I -- 1)A for any real num-

ber A, because multiplying all metrics by A has no effect.
Therefore, the quantizer thresholds should be uniformly

spaced A volts apart at -4-A/2, +3A/2,... ,4-(2q-a)A/2,

because this minimizes the metric error defined above (and

also any positive function of Ji - yi). Thus, only uniform

quantization schemes, characterized by q and A, are con-

sidered herein. (Several simulations of the NASA code

using 3-bit integer branch metrics and nonuniform quan-
tization schemes never produced lower BERs than using

the best A).

For q = 3, Ji is normally one of 7 values from -3 to
+3, so quantizer levels +4 and -4 are appended (Fig. 2) to
decrease the BER near that for 8 levels and standard inte-

ger metrics. Thus, the maximum magnitude of J, 2q-l- 1,

will be replaced by 4 instead of 3 for q = 3 throughout this

article. In rate 1/2 decoders, a branch metric of 8 is de-

creased to 7 so that q = 3 bits still represent all possible

values. Since Pr([Ji[ = j) = pj + p-j, this event occurs
with probability (p+4 + p-4) _, which is only 0.I1 for the

NASA code at Eb/No = 2.25 dB.
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IV. Quantizer Stepsize

Ideally, the uniform quantizer stepsize A should min-

imize BER and SEI_ over the decoder's operating range of
channel noise levels. In practice, a A which almost min-

imizes the BER for the lowest expected Eb/No will also

nearly minimize both the BER and SER when Eb/No in-

creases by up to 1 dB. Simulations (described later) indi-
cate that the A that maximizes channel capacity is near

optimum.

Since the binary-input quantized AWGN channel is
symmetric, capacity is achieved with equiprobable inputs:

2q-l_l

Cu(q)=
j=-2a-l-I-1

2p(j I +1) ]p(J I +1) log2 p(j I +1) + p(j [ -1)'

2 q-1 --i

=1-- _ pj log2 (1 + P--_-f)
j=-2q- s-I- 1

bits per channel use. Figure 3 shows how rapidly the max-

imum possible uniformly quantized AWGN channel capac-

ity C,(q) approaches its limit for several noise variances;

C_(3) is based upon the 9-level quantizer in Fig. 2 instead

of using 8 or 7 levels. A q=4 or q=5 quantizer has
15 or 31 levels, respectively. The data points in Fig. 2

indicate Cu(q) for integer values of q. The lines between

data points are channel capacities when uniform quantiz-
ers have intermediate numbers of levels, such as 24.

The curves in Fig. 3 show that there is negligible

capacity gain for q > 6, and in fact Cu(5)/C_,(oo) >_ 0.9975
suggests that there will be a very small loss for q = 5.

Figure 4 shows how the performance of the NASA code

at Eb/No = 2.25 dB varies with q and A. Observe that

the minimum BER for q = 5, 4, and 3 increases roughly in

proportion with the decrease in capacity. Also, for q = 5,

there is a negligible loss and the BER increases extremely

slowly for A greater than the optimum. Therefore, for q >
4, it is important to choose A larger instead of smaller than

the best value. The labels C and 7 in Fig. 4 indicate the

stepsizes that respectively maximize Cu(q) and minimize
the Battacharyya bound parameter

2q-S_l

j=-2q-l+l

which is a measure of the channel noise level: near 0 for

high Eb/No and approaching 1 for very noisy channels.

The A that minimizes 3' is the safest choice because it
is slightly larger than the stepsize which minimizes BER.

Also, minimizing 7 yields the lowest BER for q = 3 with

9 quantizer levels (Fig. 4). Finally, the corresponding 8-
bit SER curves are not shown because they have the same

relative shape and spacing as the BER curves in Fig. 4.
Many sets of software simulations were run for the NASA

code and the Galileo code. The values of q were 3, 4, 5, or

6 and Eb/No ranged from 0 dB to 3.5 dB.

In all simulations, the As which maximize Cu(q) or

minimize 7 were, respectively, slightly smaller or larger
than the A that minimized BER. For q = 3 or 4, the As

which minimize the quantizer mean-square error or abso-

lute error were too large.

The simulations in Fig. 5 for the K = 15 codes show

that using q = 5 or 4 costs 0.02 dB or 0.05 dB at the

BER of 0.005 required for images. These Eb/No quantiza-

tion losses are the same when the Viterbi decoder output

becomes the input to an outer block decoder, because the
8-bit symbol error rate curves are spaced the same distance

apart as the BER curves. In all simulations, the uniform

spacing A was chosen to minimize 7.

V. State Metric Renormalization

For each received n-vector and encoder state, a

Viterbi decoder finds the trellis path with least total
branch metrics into the state. Since the state metrics are

stored in g-bit registers, occasionally they must all be de-
creased to avoid overflow. This renormalization can be ac-

complished by zeroing every register's most significant bit
(msb), which is equivalent to subtracting 2 l-1 from every

metric if all registers have msb = 1. However, detecting
when all 2K-1 metrics simultaneously have msb = 1 is

impractical for a K = 15 decoder such as the BVD.

At each trellis level, let the random variable M be
the difference between the maximum and minimum state

metrics. If any state metric is :> 2 t-1 + 2 t-2, (its two
most significant bits are 1) and M < 2 t-2, then all met-

rics are > 2 t-1, so everymsb = 1. In the BVD, g= 16
was chosen to guarantee that 2 t-2 > M, and so a sin-

gle state metric is monitored and renormalization occurs

when the two most significant bits are 1. The following
improved method should be used when t is reduced so
that M > 2 t-_. Let W be the maximum of the metrics of

the all-zeros state, the all-ones state, and the state with a

one input followed by K - 2 zeros. Since most state met-

rics differ from one of these three metrics by only a few

IJil contributions, W is close to the largest state metric
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(Galileo code simulations verified this). Therefore, renor-
malization could occur when W exceeds a threshold such

as 2 l-1 + 2t-2-4-2 l-3 . If more metrics are monitored, the
threshold can be set closer to 2t - 1 because W will be

closer to the largest state metric.

Definition. Let D be the maximum, over all nonzero

states s, of the least-weight trellis path from the all-zeros
state into state s.

Lemma. M < D(2 q-1 - 1)

Proof. Let b and w be the states with lowest and

highest metrics. Since a convolutional code is linear, there
exist two trellis paths from some state c, one into state b

and the other into state w, whose branch labels differ in

D or fewer positions. Since the maximum contribution to

a branch metric by one Ji is 2 q-1 - 1, the state metric of
w is at most the state metric of b plus D(2 q-1 - 1).

Corollary. In the absence of noise,

M = Mo = D " j,n

where j,_ = [0.5 + m/AJ is the quantizer output when

+m volts is input.

For nonsystematic codes, D is near dfree and usually

much less than n(K- 1), the maximum possible. The
NASA code has dfree = 10, D = 8, and n(K-1) = 12.
Since D = 33 for the Galileo code, M0 = 132 for q = 5,

A = 0.20, and m = 0.84. Since D = 50 for the rate 1/6

"2-dB" code, M0 = 200. Simulations for the Galileo and

NASA codes show that M0 is an upper bound on the mean

of M when the channel is noisy and 2M0 is always greater
than M.

As in the q = 3 case where levels +4 and -4 were

adjoined, a rule for limiting branch metrics may be derived

by computing their probabilities. Define

re(x) = p0+
2q-1_1

E (P3 "4-p-j)x j
j=l

Then Pr(IJ_l = J) = {m@)}., the coefficient of zJ in
re(z). Since the largest possible granch metric is the sum

of n independent values IJ,l,..-, IJ, I, it equals t with prob-

ability {[m(x)]n}t . Thus M could be reduced by limiting
branch metrics.

Claim. Pr(M > t) <

D(2"-'-l)

i=t

where the subscript i denotes the coefficient of x i in the

polynomial within the braces.

Proof. Let b and w be the states with lowest and

highest metric. An upper bound on Pr(M = t) is obtained

by considering the worst possible case: the survivor path
for state w differs from that for state b in exactly D po-

sitions, and in these positions, the Survivor path branch

labels of w have a different sign than the received Ji. Then

Pr(M = t) is the coefficient of x t in [re(x)] o.

To achieve a particular (very low) probability, t must

be unrealistically large since the above bound is not very
tight. This is fine, because t could be chosen as the least

power of 2 such that Pr(M > t) < 10 -5 . Then setting

= 1 + log2t results in no loss of performance.

The current BVD design has q = 8 and _ = 16 to ac-

commodate M < n(K- 1)(2 q-l- 1) and two extra bits for
renormalization. This results in full maximum-likelihood

decoder performance. However, using q = 6, A = 0.14, and

t = 10 for the BVD operating at 0 to 1 dB Eb/No would
not increase the BER or SER detectably, but would reduce

the decoder hardware. Furthermore, the system clock fre-

quency and thus timing constraints would be reduced by

a factor of 10/18.

When e < 1 + log_[D(2 q-l- 1)], then occasionally a

state metric may overflow, whereupon it is immediately

decreased by 2t, instead of 2 t-1 at the next renormaliza-

tion. Protecting against overflow is important because a
state with a high metric might suddenly become one of the

best states, causing the decoder to make wrong decisions.

This can be avoided by setting state metrics that overflow

equal to all ones (2 t - 1). Then states with very high met-

rics remain this way even after renormalization so they do
not affect the decoder's output. An underflow is the event
that occurs at renormalization when a state metric has

msb = 0, in which case the metric is effectively increased

by 2t-1. Rarely, underflows may occur because it is infea-
sible to continuously check all 2g-1 state metrics to find

the least value. In conclusion, overflows can be prevented

by extra hardware, but underflows will occasionally hap-

pen. In practice, always examining several state metrics

gives a good approximation of the current metric size and
range M. Hence, renormalization can take place so that
overflows and underflows occur with very low probability.

Myth. When state metrics overflow or underflow,

the decoder fails completely.

One million decoded bit simulations for q = 5 and 4

with short state metric registers having _ = 9 and 8 bits,
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respectively, yielded the same results as in Fig. 5, because
the odd underflow or overflow that occurred did not signif-

icantly affect the output. This follows from the Viterbi de-
coder's robustness and tolerance of occasional state metric

disruptions. Further shortening of the state metric regis-

ters to 8 and 7 bits resulted in a graceful BER increase,

as though q was being decreased. This behavior is ex-
pected because the overall trellis path metric resolution

is the decoder parameter, affected by input quantization,
which influences decisions.
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